Incremental forward feature selection with application to microarray gene expression data.

نویسندگان

  • Yuh-Jye Lee
  • Chien-Chung Chang
  • Chia-Huang Chao
چکیده

In this study, the authors propose a new feature selection scheme, the incremental forward feature selection, which is inspired by incremental reduced support vector machines. In their method, a new feature is added into the current selected feature subset if it will bring in the most extra information. This information is measured by using the distance between the new feature vector and the column space spanned by current feature subset. The incremental forward feature selection scheme can exclude highly linear correlated features that provide redundant information and might degrade the efficiency of learning algorithms. The method is compared with the weight score approach and the 1-norm support vector machine on two well-known microarray gene expression data sets, the acute leukemia and colon cancer data sets. These two data sets have a very few observations but huge number of genes. The linear smooth support vector machine was applied to the feature subsets selected by these three schemes respectively and obtained a slightly better classification results in the 1-norm support vector machine and incremental forward feature selection. Finally, the authors claim that the rest of genes still contain some useful information. The previous selected features are iteratively removed from the data sets and the feature selection and classification steps are repeated for four rounds. The results show that there are many distinct feature subsets that can provide enough information for classification tasks in these two microarray gene expression data sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

Diagnosis of Breast Cancer Subtypes using the Selection of Effective Genes from Microarray Data

Introduction: Early diagnosis of breast cancer and the identification of effective genes are important issues in the treatment and survival of the patients. Gene expression data obtained using DNA microarray in combination with machine learning algorithms can provide new and intelligent methods for diagnosis of breast cancer. Methods: Data on the expression of 9216 genes from 84 patients across...

متن کامل

Developing a Filter-Wrapper Feature Selection Method and its Application in Dimension Reduction of Gen Expression

Nowadays, increasing the volume of data and the number of attributes in the dataset has reduced the accuracy of the learning algorithm and the computational complexity. A dimensionality reduction method is a feature selection method, which is done through filtering and wrapping. The wrapper methods are more accurate than filter ones but perform faster and have a less computational burden. With ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biopharmaceutical statistics

دوره 18 5  شماره 

صفحات  -

تاریخ انتشار 2008